Generating Natural Language Question-Answer Pairs from a Knowledge Graph Using a RNN Based Question Generation Model

نویسندگان

  • Mitesh M. Khapra
  • Dinesh Raghu
  • Sachindra Joshi
  • Sathish Reddy
چکیده

In recent years, knowledge graphs such as Freebase that capture facts about entities and relationships between them have been used actively for answering factoid questions. In this paper, we explore the problem of automatically generating question answer pairs from a given knowledge graph. The generated question answer (QA) pairs can be used in several downstream applications. For example, they could be used for training better QA systems. To generate such QA pairs, we first extract a set of keywords from entities and relationships expressed in a triple stored in the knowledge graph. From each such set, we use a subset of keywords to generate a natural language question that has a unique answer. We treat this subset of keywords as a sequence and propose a sequence to sequence model using RNN to generate a natural language question from it. Our RNN based model generates QA pairs with an accuracy of 33.61 percent and performs 110.47 percent (relative) better than a state-of-the-art template based method for generating natural language question from keywords. We also do an extrinsic evaluation by using the generated QA pairs to train a QA system and observe that the F1-score of the QA system improves by 5.5 percent (relative) when using automatically generated QA pairs in addition to manually generated QA pairs available for training. ∗This work was done while the author was a part of IBM Research India †This work was done while the author was a part of IBM Research India

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Using Generalized Language Model for Question Matching

Question and answering service is one of the popular services in the World Wide Web. The main goal of these services is to finding the best answer for user's input question as quick as possible. In order to achieve this aim, most of these use new techniques foe question matching. . We have a lot of question and answering services in Persian web, so it seems that developing a question matching m...

متن کامل

Training IBM Watson Using Automatically Generated Question-Answer Pairs

IBM Watson is a cognitive computing system capable of question answering in natural languages. It is believed that IBM Watson can understand large corpora and answer relevant questions more effectively than any other question-answering system currently available. To unleash the full power of Watson, however, we need to train its instance with a large number of wellprepared question-answer pairs...

متن کامل

Generating Quiz Questions from Knowledge Graphs

We propose an approach to generate natural language questions from knowledge graphs such as DBpedia and YAGO. We stage this in the setting of a quiz game. Our approach, though, is general enough to be applicable in other settings. Given a topic of interest (e.g., Soccer) and a di culty (e.g., hard), our approach selects a query answer, generates a SPARQL query having the answer as its sole resu...

متن کامل

دسته‌بندی پرسش‌ها با استفاده از ترکیب دسته‌بندها

Question answering systems are produced and developed to provide exact answers to the question posted in natural language. One of the most important parts of question answering systems is question classification. The purpose of question classification is predicting the kind of answer needed for the question in natural language. The  literature works can be categorized as rule-based and learning...

متن کامل

Enriching Answers in Question Answering Systems using Linked Data

Linked Data has emerged as the most widely used and the most powerful knowledge source for Question Answering (QA). Although Question Answering using Linked Data (QALD) fills in many gaps in the traditional QA models, the answers are still presented as factoids. This research introduces an answer presentation model for QALD by employing Natural Language Generation (NLG) to generate natural lang...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017